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TÓM TẮT 

Khóa tối tiểu và phản khóa là những khái niệm có vai trò quan trọng trong toán tử 

bao đóng. Bài báo giới thiệu về một bài toán tập không khóa của toán tử bao đóng. 

Bài toán này được bài báo chứng minh có độ phức tạp là NP-đầy đủ. 

Từ khóa: Toán tử bao đóng, khóa tối tiểu, phản khóa. 

 

1. MỞ ĐẦU 

Toán tử bao đóng đã xuất hiện từ rất lâu trong toán cũng như toán ứng dụng. 

Tuy nhiên, gần 30 năm trở lại đây, toán tử bao đóng có nhiều ứng dụng quan trọng trong 

các lĩnh vực liên quan về dữ liệu như cơ sở dữ liệu, các hệ suy diễn, khai phá dữ liệu [1, 

4, 6, 9]. Ngoài ra, các toán tử bao đóng này cũng có thể tìm thấy trong nhiều lý thuyết 

thời sự như siêu đồ thị, matroid, tập thô, tập mờ, trí tuệ nhân tạo, lý thuyết quyết định 

[3, 5, 8, 10].  

Trong các vấn đề nghiên cứu về toán tử bao đóng thì khóa và phản khóa là được 

nhiều nhà nghiên cứu quan tâm nhất. Bài báo này cũng không ngoài mục đích đó. Trong 

bài báo này chúng tôi nghiên cứu độ phức tạp của bài toán xác định một tập cho trước 

có phải không khóa của toán tử bao đóng hay không.  

Cấu trúc bài báo chia làm 4 phần, Sau phần mở đầu, phần thứ 2 giới thiệu khái 

niệm toán tử bao đóng và một số khái niệm, kết quả cơ sở liên quan. Phần thứ 3 chúng 

tôi giới thiệu và chứng minh một bài toán NP-đầy đủ về tập không khóa của toán tử bao 

đóng. Phần cuối cùng của bài báo là kết luận. 

 

2. MỘT SỐ KHÁI NIỆM CƠ SỞ 

Mục này nhắc lại một số khái niệm và kết quả cơ sở. Các định nghĩa và kết quả 

này có thể tìm thấy trong [1, 2, 10]. 
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Cho U  là một tập hữu hạn khác rỗng. Ký hiệu ( )P U  là tập lũy thừa của U . Ánh 

xạ →: ( ) ( )L P U P U  thỏa các điều kiện sau: 

(L1)  ( )X L X  

(L2)   ( ) ( )X Y L X LY  

(L3) =( ( )) ( )L L X L X  

với mọi ,X Y U , được gọi là một toán tử bao đóng (TTBĐ) trên U . Ký hiệu ( )CL U  là 

tập tất cả các TTBĐ trên U . 

Xét TTBĐ  ( )L CL U  và K U . Tập K  được gọi là khóa của L  nếu =( )L K U . 

Một khóa K  được gọi là tối tiểu nếu với mọi a K  thì −( )L K a 1 không phải là một 

khóa. Ký hiệu tập tất cả khóa tối tiểu của L  là ( )Key L . 

Một tập con 
− 1K U  được gọi là phản khóa của L  nếu − 1( )L K U  và với mọi 

− − 1a U K  thì −  =1( )L K a U . Ký hiệu ( )Antikey L  là tập tất cả các phản khóa của L .  

Mối quan hệ giữa khóa tối tiểu và phản khóa của TTBĐ như sau: 

Mệnh đề 2.1. [9]  

= −( ) ( )Key L U Antikey L . 

Ví dụ 2.1. Các ánh xạ sau là các TTBĐ cơ sở: 

1) Ánh xạ tối đại →: ( ) ( )m P U P U  xác định bởi =( )m X U  với mọi X U , và 

 = ( )Key m , = ( )Antikey m . 

2) Ánh xạ đồng nhất →: ( ) ( )i P U P U  cho bởi =( )i X X  với mọi X U , và 

 =( )Key i U ,  = − ( ) :Antikey i U a a U . 

3) Ánh xạ tịnh tiến →: ( ) ( )
M
t P U P U  xác định bởi = ( )

M
t X M X  với M  là tập 

con cho trước của U , X U  và  = −( )
M

Key t U M , 

 = −  −( ) :
M

Antikey t U a a U M  

 

3. KẾT QUẢ 

Xét TTBĐ ( )L CL U . Đặt  = : kh«ng ph¶i lµ mét khãa cña S X X L . Như 

vậy, rõ ràng S  là họ các tập không phải khóa của TTBĐ L . Từ định nghĩa phản khóa, 

suy ra ( )Antikey L  cũng là họ các tập không phải khóa tối đại của L .  

 
1 Ký hiệu −  −, ,X a X a X Y  tương ứng lần lượt thay cho    \ , , \X a X a X Y  với mọi 

,X Y U  và a U  
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Như chúng ta đã biết các tập không phải khóa tối đại đóng vai trò quan trọng 

trong nhiều bài toán thú vị của TTBĐ cũng như nhiều vấn đề liên quan khác. Trong mục 

này, chúng ta sẽ giới thiệu một bài toán NP-đầy đủ liên quan đến tập không khóa của 

TTBĐ. Bài toán này được mô tả như sau 

Bài toán 3.1. (Bài toán không khóa của TTBĐ) 

Dữ kiện: TTBĐ ( )L CL U  và một số nguyên dương k  sao cho | |k U . 

Câu hỏi:  Có tồn tại một tập X S  sao cho | |k X ? 

Để chứng minh tính NP-đầy đủ của Bài toán 3.1, chúng ta sẽ sử dụng Bài toán 

NP-đầy đủ tập độc lập đã biết sau 

Bài toán 3.2. [7] (Bài toán tập độc lập) 

Dữ kiện: Một số nguyên dương k  và một đồ thị vô hướng = ( , )G V E  với V  là tập các 

đỉnh và E  là tập các cạnh. 

Câu hỏi:  Có tồn tại một tập độc lập I  sao cho | |k I ? 

Định lý 3.1. Bài toán 3.1 là NP-đầy đủ. 

Chứng minh. 

Dễ thấy Bài toán 3.1 thuộc lớp NP, vì tồn tại thuật toán không đơn định giải Bài 

toán 3.1 như sau:  

• Sinh một tập con X U  sao cho | |X k  một cách không đơn định. 

• Kiểm tra trong thời gian đa thức X  có phải là tập không khóa của TTBĐ L  

hay không. 

Bây giờ chúng ta sẽ chứng minh Bài toán 3.2 quy dẫn đa thức về Bài toán 3.1. 

Thật vậy, xét đồ thị vô hướng = ( , )G V E  với | |k V . Ta xây dựng ánh xạ 

→: ( ) ( )f P U P U  như sau: 

  = 
= 


   nÕu ,
( )

  ng­îc l¹i

V X u v E
f X

X
 

ở đây =U V . Chú ý rằng với mỗi X E  ta có =( ) ( )f X i X . Dễ thấy  ( )f CL U  và f  

được xây dựng trong thời gian đa thức theo kích thước của G . 

 Theo định nghĩa đồ thị, rõ ràng E  là một siêu đồ thị đơn trên V . Từ định nghĩa 

khóa tối tiểu và TTBĐ f  được xây dựng như trên, ta có =( )Key f E . Do đó, có thể thấy 

X  không phải một khóa của f  nếu và chỉ nếu  ,u v X  với mọi  ,u v E . Vậy, X  

không phải khóa của f  nếu và chỉ nếu X  là một tập độc lập của G . 
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4. KẾT LUẬN 

Như vậy, bài báo đã giới thiệu bài toán không khóa của TTBĐ, và chứng minh 

được bài toán này có độ phức tạp là NP-đầy đủ. Điều này có nghĩa rằng bài toán không 

khóa của TTBĐ là bài toán rất khó, không có thuật toán đa thức giải bài toán này nếu 

NP P . 
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Minimal keys and antikeys that are concepts play an important role in the closure 
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